289 research outputs found

    Prediction of interesting ferromagnetism in Janus semiconducting Cr2_2AsP monolayer

    Full text link
    Two-dimensional (2D) half-metallic materials that have sparked intense interest in advanced spintronic applications are essential to the developing next-generation nanospintronic devices. Here we have adopted a first-principles calculation method to predict the magnetic properties of intrinsic, Se-doped, and biaxial strain tuning Cr2_2AsP monolayer. The Janus Cr2_2AsP monolayer is proved to be an intrinsic ferromagnetic (FM) semiconductor with a exchange splitting bandgap of 0.15 eV at the PBE+U level. Concentration-dependent Se doping such as Cr2_2As1−x_{1-x}Sex_xP (x = 0.25, 0.50, 0.75) can regulate Cr2_2AsP from FM semiconductor to FM half-metallicity. Specifically, the spin-up channel crosses the Fermi level, while the spin-down channel has a bandgap. More interestingly, the wide half-metallic bandgaps and spin bandgaps make them have important implications for the preparation of spintronic devices. At last, we also explore the effect of biaxial strain from -14% to 10% on the magnetism of the Cr2_2AsP monolayer. There appears a transition from FM to antiferromagnetic (AFM) at a compressive strain of -10.7%, originating from the competition between the indirect FM superexchange interaction and the direct AFM interaction between the nearest-neighbor Cr atoms. Additionally, when the compressive strain to -2% or the tensile strain to 6%, the semiconducting Cr2_2AsP becomes a half-metallic material. These charming properties render the Janus Cr2_2AsP monolayer with great potential for applications in spintronic devices.Comment: 14 pages, 4 figure

    Identification and control of a Pseudomonas spp (P. fulva and P. putida) bloodstream infection outbreak in a teaching hospital in Beijing, China

    Get PDF
    SummaryObjectivesAn outbreak of bacteremia caused by Pseudomonas spp (P. fulva and P. putida) was first identified in our hospital in the summer of 2010 and reoccurred in the following year. Based on the epidemiological data collected in these 2 years, we initiated an investigation on the source of the outbreak. The aim of this study was to report the results of the investigation, as well as the intervention strategies that resulted in successful control of the outbreak.MethodsAn infection control team was set up consisting of infectious disease specialists, microbiologists, infection control practitioners, and head nurses. The microbiology and medical records of case-patients with P. fulva or P. putida bloodstream infections were reviewed. Environmental samples and intravenous (IV) solutions from the wards and the pharmacy center were collected for culturing. The molecular characteristics of the bacterial isolates were studied by pulsed-field gel electrophoresis (PFGE). Strict infection control strategies were implemented.ResultsA total of 20 case-patients from five inpatient wards were identified during three summer seasons from 2010 to 2012. Nineteen of them recovered with proper antibiotics. Unfortunately one died from complications of heart failure. A total of 19 isolates of P. fulva and four of P. putida were identified, of which 20 were from blood, two from environmental surface samples from the hospital pharmacy, and one from an in-use compounded solution from a case-patient in the cardiology ward. Molecular analysis revealed that the P. fulva isolated from the in-use compounded solution (5% glucose solution containing insulin, isosorbide dinitrate, and potassium magnesium aspartate) and the environmental samples had the same PFGE type as the clinical isolates.ConclusionsThe investigation identified that contaminated IV solution was the source of the P. fulva bacteremia, which prompted us to implement intensified control measures that resulted in successful control of the outbreak

    First-principles calculations on the mechanical, electronic, magnetic and optical properties of two-dimensional Janus Cr2_2TeX (X= P, As, Sb) monolayers

    Full text link
    Janus materials possess extraordinary physical, chemical, and mechanical properties caused by symmetry breaking. Here, the mechanic properties, electronic structure, magnetic properties, and optical properties of Janus Cr2_2TeX (X= P, As, Sb) monolayers are systematically investigated by the density functional theory. Janus Cr2_2TeP, Cr2_2TeAs, and Cr2_2TeSb are intrinsic ferromagnetic (FM) half-metals with wide spin gaps and half-metallic gaps. Monte Carlo simulations based on the Heisenberg model estimate the Curie temperature (\emph{T}c_c) of these monolayers are about 583, 608, and 597 K, respectively. Additionally, it is found that Cr2_2TeX (X= P, As, Sb) monolayers still exhibit FM half-metallic properties under biaxial strain from -6% to 6%. At last, the Cr2_2TeP monolayer has a higher absorption coefficient than the Cr2_2TeAs and Cr2_2TeSb monolayers in the visible region. The results predict that Janus Cr2_2TeX (X= P, As, Sb) monolayers with novel properties have good potential for applications in future nanodevices.Comment: 14 pages, 5 figure

    Effective Image Restorations Using a Novel Spatial Adaptive Prior

    Get PDF
    Bayesian or Maximum a posteriori (MAP) approaches can effectively overcome the ill-posed problems of image restoration or deconvolution through incorporating a priori image information. Many restoration methods, such as nonquadratic prior Bayesian restoration and total variation regularization, have been proposed with edge-preserving and noise-removing properties. However, these methods are often inefficient in restoring continuous variation region and suppressing block artifacts. To handle this, this paper proposes a Bayesian restoration approach with a novel spatial adaptive (SA) prior. Through selectively and adaptively incorporating the nonlocal image information into the SA prior model, the proposed method effectively suppress the negative disturbance from irrelevant neighbor pixels, and utilizes the positive regularization from the relevant ones. A two-step restoration algorithm for the proposed approach is also given. Comparative experimentation and analysis demonstrate that, bearing high-quality edge-preserving and noise-removing properties, the proposed restoration also has good deblocking property

    Mechanical deformation mechanism and verification of sections at junctions of light and dark tunnel in a mountain area

    Get PDF
    Projects involving junctions of light and dark tunnel in mountainous areas are complex engineering problems that combine tunnel structure, slope rock-soil mass and protection projects. Such junctions suffer from a complex and changeable load. The stress and deformation of the junction varies under different conditions. Thus, it is a major source of inconvenience for construction and monitoring operations. In this paper, according to the load conditions at a junction of light and dark tunnel, we divide the junction hole into thrust, compression, and combined thrust-compression types. Three types of structures were simulated by numerical analysis, and we explored the structural deformation and stress of these types of tunnel under different condition. Thus, in any construction process, the mechanical deformation mechanism and the weak point in the structure should be worked out. Based on the weak parts, some monitoring points were installed, and four fields for monitoring were chosen. The monitoring results show that the actual deformation, stress and structural failure location are basically consistent with the numerical simulation results. The deformation mechanism of light and dark tunnel junction obtained can provide the basis for selecting the treatment measures and controlling the structural deformation. Furthermore, the results can also be used as a reference for similar engineering design, construction and site monitoring projects

    Using Peer Comparison Approaches to Measure Software Stability

    Get PDF
    Software systems must change to adapt to new functional requirements and new nonfunctional requirements. This is called software revision. However, not all the modules within the system need to be changed during each revision. In this paper, we study how frequently each module is modified. Our study is performed through comparing the stability of peer software modules. The study is performed on six open-source Java projects: Ant, Flow4j, Jena, Lucence, Struct, and Xalan, in which classes are identified as basic software modules. Our study shows (1) about half of the total classes never changed; (2) frequent changes occur to small number of classes; and (3) the number of changed classes between current release and next release has no significant relations with the time duration between current release and next release. Keywords: software evolution; software revision; software stability; class stability; open-source project; Java clas

    Cardioprotective effects of tanshinone IIA pretreatment via kinin B2 receptor-Akt-GSK-3β dependent pathway in experimental diabetic cardiomyopathy

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>Diabetic cardiomyopathy, characterized by myocardial structural and functional changes, is a specific cardiomyopathy develops in patients with diabetes mellitus. The present study was to investigate the role of kinin B2 receptor-Akt-glycogen synthase kinase (GSK)-3β signalling pathway in mediating the protective effects of tanshinone IIA (TSN) on diabetic cardiomyopathy.</p> <p>Methods and results</p> <p>Streptozocin (STZ) induced diabetic rats (n = 60) were randomized to receive TSN, TSN plus HOE140 (a kinin B2 receptor antagonist), or saline. Healthy Sprague-Dawley (SD) rats (n = 20) were used as control. Left ventricular function, myocardial apoptosis, myocardial ultrastructure, Akt, GSK-3β and NF-κB phosphorylation, the expression of TNF-α, IL-6 and myeloperoxidase (MPO) were examined. Cardiac function was well preserved as evidenced by increased left ventricular ejection fraction (LVEF) and ± dp/dt (maximum speed of contraction/relaxation), along with decreased myocardial apoptotic death after TSN administration. TSN pretreatment alleviated mitochondria ultrastructure changes. TSN also enhanced Akt and GSK-3β phosphorylation and inhibited NF-κB phosphorylation, resulting in decreased TNF-α, IL-6 and MPO activities. Moreover, pretreatment with HOE140 abolished the beneficial effects of TSN: a decrease in LVEF and ± dp/dt, an inhibition of cardiomyocyte apoptosis, a destruction of cardiomyocyte mitochondria cristae, a reduction of Akt and GSK-3β phosphorylation, an enhancement of NF-κB phosphorylation and an increase of TNF-α, IL-6 and MPO production.</p> <p>Conclusion</p> <p>These data indicated that TSN is cardioprotective in the context of diabetic cardiomyopathy through kinin B2 receptor-Akt-GSK-3β dependent pathway.</p
    • …
    corecore